Jueves, 13 de noviembre de 2008
Wikipedia
Hidrógeno - Helio

H
Li  
 
 


Tabla completa
General
Nombre, símbolo, número Hidrógeno, H, 1
Serie química No metales
Grupo, periodo, bloque 1, 1 , s
Densidad, dureza Mohs 0,08988 kg·m-3, -
Apariencia

Incoloro
Propiedades atómicas
Masa atómica 1,00794(7) u
Radio medio 25 pm
Radio atómico calculado 53 pm (Radio de Bohr)
Radio covalente 37 pm
Radio de Van der Waals 120 pm
Término del estado fundamental 2S1/2
Configuración electrónica 1s1
Estados de oxidación (óxido) 1, -1 (anfótero)
Estructura cristalina Hexagonal
Propiedades físicas
Estado de la materia gas
Punto de fusión 14,025 K
Punto de ebullición 20,268 K
Punto de inflamabilidad 255 K
Punto de autoignición 773 - 844 K
Entalpía de vaporización 0,44936 kJ·mol-1
Entalpía de fusión 0,05868 kJ·mol-1
Presión de vapor 209 Pa a 23 K
Punto triple 13,8033 K ; 7,042·103 Pa
Punto crítico 23,97 K ; 1,293·106 Pa
Velocidad del sonido 1270 m·s-1 a 298,15 K
Solubilidad en agua 1,7 mg·l-1 a 293,15 K
Viscosidad 8,6·10-5P a 273,15 K
Tensión superficial 2,438·10-3 N·m-1 a 18,65 K
Información diversa
Electronegatividad 2,2 (Pauling)
2,2 (Allred y Rochow)
Calor específico 1,4304·104J·kg-1·K-1
Calor de fusión (H2) 0,117  kJ·mol−1
Calor de vaporización (H2) 0,904  kJ·mol−1
Constante dieléctrica 1,00026 a 273,15 K
Conductividad eléctrica sin datos
Coeficiente de expansión térmica 0,00366 K-1 a 293,15 K
Conductividad térmica 0,1815 http://es.wikipedia.org/w·m-1·K-1
Potencial de ionización 1312 kJ·mol-1
E0(2H+ + e- → H2) 0,000 V
Isótopos más estables
iso. AN (%) Periodo de semidesintegración MD ED (MeV) PD
1H 99,985 H es estable con 0 neutrones
2H 0,012 H es estable con 1 neutrón
3H 0,003 12,33 años β- 0,019 3He
Valores en el SI y en condiciones normales
(0 °C y 1 atm), salvo que se indique lo contrario.
Calculado a partir de distintas longitudes
de enlace covalente, metálico o iónico.

El hidrógeno es un elemento químico representado por el símbolo H y con un número atómico de 1. En condiciones normales de presión y temperatura, es un gas diatómico (H2) incoloro, inodoro, insípido, no metálico y altamente inflamable. Con una masa atómica de 1,00794(7) u, el hidrógeno es el elemento químico más ligero y es, también, el elemento más abundante, constituyendo aproximadamente el 75% de la materia del universo.[1]

En su ciclo principal, las estrellas están compuestas por hidrógeno en estado de plasma. El hidrógeno elemental es muy escaso en la Tierra y es producido industrialmente a partir de hidrocarburos como, por ejemplo, el metano. La mayor parte del hidrógeno elemental se obtiene "in situ", es decir, en el lugar y en el momento en el que se necesita. El hidrógeno puede obtenerse a partir del agua por un proceso de electrólisis, pero resulta un método mucho más caro que la obtención a partir del gas natural.

Sus principales aplicaciones industriales son el refinado de combustibles fósiles (por ejemplo, el hidrocracking) y la producción de amoníaco (usado principalmente para fertilizantes).

El isótopo del hidrógeno más común en la naturaleza, conocido como protio, tiene un solo protón y ningún neutrón. En los compuestos iónicos, el hidrógeno puede adquirir carga positiva (convirtiéndose en un catión compuesto únicamente por el protón) o negativa (convirtiéndose en un anión conocido como hidruro).

El hidrógeno puede formar compuestos con la mayoría de los elementos y está presente en el agua y en la mayoría de los compuestos orgánicos. Desempeña un papel particularmente importante en la química ácido - base, en la que muchas reacciones conllevan el intercambio de protones entre moléculas solubles. Puesto que es el único átomo neutro para el cual la ecuación de Schrödinger puede ser resuelta analíticamente, el estudio de la energía y del enlace del átomo de hidrógeno ha sido fundamental para el desarrollo de la mecánica cuántica.

[editar] Nomenclatura

Hidrógeno, del latín "hydrogenium", y éste del griego antiguo ὕδωρ (hydor): "agua" y γένος-ου(genos): "generador".

La palabra hidrógeno puede referirse tanto al elemento atómico (descrito en este artículo), como a la molécula diatómica (H2) que se encuentra en trazas en la atmósfera terrestre. Los químicos tienden a referirse a esta molécula como dihidrógeno,[2] molécula de hidrógeno, o hidrógeno diatómico, para distinguirla del elemento.

[editar] Historia

[editar] Descubrimiento del hidrógeno

El hidrógeno diatómico gaseoso, H2, fue formalmente descrito por primera vez por T. Von Hohenheim (más conocido como Paracelso, 1493 - 1541) que lo obtuvo artificialmente mezclando metales con ácidos fuertes. Paracelso no era consciente de que el gas inflamable generado en estas reacciones químicas estaba compuesto por un nuevo elemento químico. En 1671, Robert Boyle redescubrió y describió la reacción que se producía entre limaduras de hierro y ácidos diluidos, y que generaba hidrógeno gaseoso.[3]

En 1766, Henry Cavendish fue el primero en reconocer el hidrógeno gaseoso como una sustancia discreta, identificando el gas producido en la reacción metal - ácido como "aire inflamable" y descubriendo que la combustión del gas generaba agua. Cavendish tropezó con el hidrógeno cuando experimentaba con ácidos y mercurio. Aunque asumió erróneamente que el hidrógeno era un componente liberado por el mercurio y no por el ácido, fue capaz de describir con precisión varias propiedades fundamentales del hidrógeno. Tradicionalmente, se considera a Cavendish el descubridor de este elemento.

En 1783, Antoine Lavoisier dio al elemento el nombre de hidrógeno (en francés Hydrogène, del griego ὕδωρ, ὕδᾰτος, "agua" y γένος-ου, "generador") cuando comprobó (junto a Laplace) el descubrimiento de Cavendish de que la combustión del gas generaba agua.

En el artículo teoría del flogisto se narra un poco más acerca de esta historia.

[editar] Papel del hidrógeno en la Teoría Cuántica

Gracias a su estructura atómica relativamente simple, consistente en un solo protón y un solo electrón, el átomo de hidrógeno junto con su espectro de absorción ha sido un punto central en el desarrollo de la Teoría de la Estructura Atómica. Además, la consiguiente simplicidad de la molécula de hidrógeno diatómico y el correspondiente catión H2+, permitió una comprensión más completa de la naturaleza del enlace químico, que continuó poco después con el tratamiento mecano - cuántico del átomo de hidrógeno, que había sido desarrollado a mediados de la década de 1920.

Uno de los primeros efectos cuánticos que fue explícitamente advertido (pero no entendido en ese momento) fue una observación de Maxwell en la que estaba involucrado el hidrógeno, medio siglo antes de que se estableciera completamente la Teoría Mecano - Cuántica. Maxwell observó que el calor específico del H2, inexplicablemente, se desviaba del correspondiente a un gas diatómico por debajo de la temperatura ambiente y comenzaba a parecerse cada vez más al correspondiente a un gas monoátomico a temperaturas muy bajas. De acuerdo con la Teoría Cuántica, este comportamiento resulta del espaciamiento de los niveles energéticos rotacionales (cuantizados), que se encuentran particularmente separados en el H2 debido a su pequeña masa. Estos niveles tan separados impiden el reparto equitativo de la energía calorífica para generar movimiento rotacional en el hidrógeno a bajas temperaturas. Los gases diatómicos compuestos de átomos pesados no poseen niveles energéticos rotacionales tan separados y, por tanto, no presentan el mismo efecto que el hidrógeno.[4]

[editar] Abundancia

NGC 604, una enorme región de hidrógeno ionizado en la Galaxia del Triángulo

El hidrógeno es el elemento más abundante del universo, suponiendo más del 75% en masa y más del 90% en número de átomos.[5] Este elemento se encuentra en abundancia en las estrellas y los planetas gaseosos gigantes. Las nubes moleculares de H2 están asociadas a la formación de las estrellas. El hidrógeno también juega un papel fundamental como combustible de las estrellas por medio de las reacciones de fusión nuclear entre protones.

En el universo, el hidrógeno se encuentra principalmente en su forma atómica y en estado de plasma, cuyas propiedades son bastante diferentes a las del hidrógeno molecular. Como plasma, el electrón y el protón del hidrógeno no se encuentran ligados, por lo que presenta una alta conductividad eléctrica y una gran emisividad (origen de la luz emitida por el Sol y otras estrellas). Las partículas cargadas están fuertemente influenciadas por los campos eléctricos y magnéticos. Por ejemplo, en los vientos solares las partículas interaccionan con la magnetosfera terrestre generando corrientes de Birkeland y el fenómeno de la aurora.

Bajo condiciones ordinarias en la Tierra, el hidrógeno existe como gas diatómico, H2. Sin embargo, el hidrógeno gaseoso es extremadamente poco abundante en la atmósfera de la Tierra (1 ppm en volumen), debido a su pequeña masa que le permite escapar al influjo de la gravedad terrestre más fácilmente que otros gases más pesados. Aunque los átomos de hidrógeno y las moléculas diatómicas de hidrógeno abundan en el espacio interestelar, son difíciles de generar, concentrar y purificar en la Tierra. El hidrógeno es el decimoquinto elemento más abundante en la superficie terrestre[6] La mayor parte del hidrógeno terrestre se encuentra formando parte de compuestos químicos tales como los hidrocarburos o el agua.[7] El hidrógeno gaseoso es producido por algunas bacterias y algas, y es un componente natural de las flatulencias. El metano es una fuente de enorme importancia para la obtención del hidrógeno.

[editar] El átomo de hidrógeno

[editar] Niveles energéticos electrónicos

Representación de los niveles energéticos del átomo de hidrógeno.

El nivel energético del estado fundamental electrónico de un átomo de hidrógeno es -13,6 eV, que equivale a un fotón del ultravioleta de, aproximadamente, 92 nm.

Los niveles energéticos del hidrógeno pueden calcularse con bastante precisión empleando el modelo atómico de Bohr, que considera que el electrón orbita alrededor del protón de forma análoga a la orbita terrestre alrededor del Sol. Sin embargo, la fuerza electromagnética hace que el protón y el electrón se atraigan, de igual modo que los planetas y otros cuerpos celestes se atraen por la fuerza gravitatoria. Debido al carácter discreto del momento angular postulado en los inicios de la Mecánica Cuántica por Bohr, el electrón en el modelo de Bohr sólo puede orbitar a ciertas distancias permitidas alrededor del protón y, por extensión, con ciertos valores de energía permitidos. Una descripción más precisa del átomo de hidrógeno viene dada mediante un tratamiento puramente mecano - cuántico que emplea la ecuación de Schrödinger o la formulación equivalente de las integrales de camino de Feynman para calcular la densidad de probabilidad del electrón. El tratamiento a través de la hipótesis de De Broglie (dualidad onda - partícula) al electrón reproduce resultados químicos (tales como la configuración del átomo de hidrógeno) de manera más natural que el modelo de partículas de Bohr, aunque la energía y los resultados espectrales son los mismos. Si en la construcción del modelo se emplea la masa reducida del núcleo y del electrón (como se haría en problema de dos cuerpos en la Mecánica Clásica), se obtiene una mejor formulación para los espectros del hidrógeno, y los desplazamientos espectrales correctos para el deuterio y el tritio. Pequeños ajustes en los niveles energéticos del átomo de hidrógeno, que corresponden a efectos espectrales reales, pueden determinarse usando la Teoría Mecano - Cuántica completa, que corrige los efectos de la Relatividad Especial (ver ecuación de Dirac), y computabilizando los efectos cuánticos originados por la producción de partículas virtuales en el vacío y como resultado de los campos eléctricos (ver Electrodinámica Cuántica).

En el hidrógeno gaseoso, el nivel energético del estado electrónico fundamental está dividido a su vez en otros niveles de estructura hiperfina, originados por el efecto de las interacciones magnéticas producidas entre los espines del electrón y del protón. La energía del átomo cuando los espines del protón y del electrón están alineados es superior que cuando los espines no lo están. La transición entre esos dos estados puede tener lugar mediante la emisión de un fotón a través de una transición de dipolo magnético. Los radiotelescopios pueden detectar la radiación producida en este proceso, lo que sirve para crear mapas de distribución del hidrógeno en la galaxia.

[editar] Isótopos

El protio, el isótopo más común del hidrógeno, tiene un protón y un electrón. Es el único isótopo estable que no posee neutrones.

El hidrógeno posee tres isótopos naturales que se denotan como 1H, 2H y 3H. Otros isótopos altamente inestables (del 4H al 7H) han sido sintetizados en laboratorio, pero nunca observados en la naturaleza.[8][9]

  • 1H, conocido como protio, es el isótopo más común del hidrógeno con una abundancia de más del 99,98%. Debido a que el núcleo de este isótopo está formado por un solo protón se le ha bautizado como protio, nombre que a pesar de ser muy descriptivo, es poco usado.
  • 2H, el otro isótopo estable del hidrógeno, es conocido como deuterio y su núcleo contiene un protón y un neutrón. El deuterio representa el 0,0026% o el 0,0184% (según sea en fracción molar o fracción atómica) del hidrógeno presente en la Tierra, encontrándose las menores concentraciones en el hidrógeno gaseoso, y las mayores (0,015% o 150 ppm) en aguas oceánicas. El deuterio no es radiactivo, y no representa un riesgo significativo de toxicidad. El agua enriquecida en moléculas que incluyen deuterio en lugar de hidrógeno 1H (protio), se denomina agua pesada. El deuterio y sus compuestos se emplean en marcado no radiactivo en experimentos y también en disolventes usados en espectroscopia 1H - RMN. El agua pesada se utiliza como moderador de neutrones y refrigerante en reactores nucleares. El deuterio es también un potencial combustible para la fusión nuclear con fines comerciales.
  • 3H se conoce como tritio y contiene un protón y dos neutrones en su núcleo. Es radiactivo, desintegrándose en 32He+ a través de una emisión beta. Posee un periodo de semidesintegración de 12,33 años.[7] Pequeñas cantidades de tritio se encuentran en la naturaleza por efecto de la interacción de los rayos cósmicos con los gases atmosféricos. También ha sido liberado tritio por la realización de pruebas de armamento nuclear. El tritio se usa en reacciones de fusión nuclear, como trazador en Geoquímica Isotópica, y en dispositivos luminosos auto - alimentados. Antes era común emplear el tritio como radiomarcador en experimentos químicos y biológicos, pero actualmente se usa menos.
El hidrógeno es el único elemento que diferentes nombres comunes para cada uno de sus isótopos (naturales). Durante los inicios de los estudios sobre la radiactividad, a algunos isótopos radiactivos pesados les fueron asignados nombres, pero ninguno de ellos se sigue usando). Los símbolos D y T (en lugar de 2H y 3H) se usan a veces para referirse al deuterio y al tritio, pero el símbolo P corresponde al fósforo y, por tanto, no puede usarse para representar al protio. La IUPACdeclara que aunque el uso de estos símbolos sea común, no es lo aconsejado.

Leer más: http://es.wikipedia.org/wiki/Hidr%C3%B3geno


Tags: Hidrógeno, agua, ácido, protón, átomos, idea, wikipedia

Comentarios
Discurso Impecable de Fidel Castro y ¿Por qué MoReNa? @Taibo2 Paco Ignacio Taibo II

Pirámide capitalista
Pirámide capitalista. actualizada