Domingo, 23 de noviembre de 2008

El número de cromosomas 2n varía mucho de unas especies a otras y no existe relación entre el número de cromosomas, existen especies vegetales con pocos cromosomas como Haplopappus gracilis (2n=4), Crepis capillaris (2n=6) y Secale cereale (2n=14) , especies vegetales con bastantes cromosomas como Triticum aestivum (2n=42) y especies vegetales con muchos cromosomas como Ophioglossum petiolatum (n >500). En animales sucede algo semejante, hay especies con pocos cromosomas como la hormiga australiana Myrmecia pilosula cuyos machos tienen un cromosoma (2N=1) y las hembras dos cromosomas (2n=2), especies con bastantes cromosomas como la humana Homo sapiens (2n=46) y especies con muchos cromosomas como el lepidoptero Lysandra atlantica (2n=434-466). No existe ninguna relación entre el número de cromosomas 2n y la complejidad evolutiva, ni entre el número de cromosomas y la cantidad de ADN. Un ejemplo claro de esta situación es el de los ciervos del género Muntiacus en el que hay especies muy similares (denominadas especies gemelas) una con 2n=6 (M. muntjak) y otra con 2n=46 (M. reevesi).

[editar] Cromosomas sexuales

En muchos organismos, uno de los pares de los cromosomas homólogos es distinto al resto, realizando la determinación genética del individuo. A estos cromosomas se les llama cromosomas sexuales o heterocromosomas e incluso gonosomas, porque determinan el sexo por la proporción de los dos cromosomas homólogos.

  • Sistema de determinación XY: es propio del ser humano y muchos otros animales. Las hembras, siendo XX, darán gametos iguales con cromosoma X, sexo homogamético y los machos, siendo XY, darán dos tipos de gametos, uno con el cromosoma X y otro con el cromosoma Y. La probabilidad de que en la fecundación, al unirse los gametos, resulte una combinación XX (hembra) o XY (macho) es aproximadamente del 50%.
  • Sistema de determinación ZW: en otras especies (mariposas, p.e.) ocurre lo contrario, el sexo masculino es homogamético (ZZ) y el femenino heterogamético (ZW).
  • Sistema de determinación XO: otras especies (peces, insectos, anfibios) que no tienen el cromosoma Y, determinándose el sexo por el número de cromosomas X, macho XO y hembra XX.

[editar] Forma de los cromosomas

El cromosoma humano 19 es metacéntrico.
El cromosoma humano 14 es acrocéntrico.
Cariotipo espectral, el cariograma se obtiene luego de la identificación y clasifciación de los cromosomas. El cariotipo que se muestra corresponde a un individuo de sexo femenino ya que se observan dos cromosomas X.

La forma de los cromosomas es para todas las células somáticas constante y característica de cada especie. La forma depende fundamentalmente de las constricciones que presente el cromosoma y de su localización en la cromátida.

El cromosoma se encuentra constituido básicamente por el centrómero que divide el cromosoma en un brazo corto o brazo p y un brazo largo o brazo q. Algunos cromosomas presentan satélites en el brazo corto.

Según la posición del centrómero, los cromosomas se clasifican en:

Metacéntricos
El centrómero se localiza a mitad del cromosoma y los dos brazos presentan igual longitud.
Submetacéntricos
La longitud de un brazo del cromosoma es algo mayor que la del otro.
Acrocéntricos
Un brazo es muy corto (p) y el otro largo (q).
Telocéntricos
Sólo se aprecia un brazo del cromosoma al estar el centrómero en el extremo.

Es posible visualizar los cromosomas por medio de la microscopía de luz y de tinciones especiales, el proceso para obtener el material cromosómico se realiza en diversos pasos:

  1. Obtención de la muestra: Se realiza exclusivamente de tejidos vivos que contengan células con núcleo.Principalmente se emplean los glóbulos blancos que encontramos en la sangre por su fácil accesibilidad.
  2. Siembra: La cual se realiza agregando aproximadamente 1 mililitro de sangre entera heparinizada a un medio de cultivo enriquecido con suero fetal bovino, antibióticos y mitógenos, lo cual estimulará el crecimiento y división de las células.
  3. Incubación: Se mantiene a 38.0 grados centígrados con una atmósfera de CO2 al 5 % y humedad por 72 horas idealmente.
  4. Cosecha: Se agrega colchicina a la muestra para detener los núcleos ceulares en metafase, posteriormente se cenfrifuga la mezcla para retirar el sobrenadante (suero sanguíneo y medio de cultivo). Se agrega solución hipotónica de cloruro de potasio para romper las membranas celulares y para finalizar el paso de la cosecha se realizan 3 lavados con una solución de metanol-ácido acético 3:1.
  5. Goteo: Posterior a los lavados, por medio de centrifugación, se obtiene un botón celular blanco, el cual se suspende en la misma solución fijadora metanol-ácido acético 3:1 y se procede a gotear en un portaobjetos a unos cuantos centímetros, esto es con el objetivo de "reventar" las células y obtener los cromosomas.
  6. Envejecimiento: En este paso se espera a que los cromosomas pierdan humedad. Se puede aplicar calor al portaobjetos para deshidratar la muestra.
  7. Tinción: Existen muchos tipos de tinciones para observar los cromosomas. La más utilizada es la tinción con colorante Giemsa, se conoce como técnica de bandas GTG. En este caso se expone la muestra del portaobjetos a tripsina, con el objetivo de desnaturalizar algunas de las proteínas constitucionales de los cromosomas. Posteriormente se tiñen con dos colorantes, Giemsa y Wrigth, en algunos laboratorios puede emplearse un solo colorante, pero el empleo de los dos mejora la calidad del resultado, puesto que facilita el análisis al microscopio para el citogenetista creando un contraste de color en las bandas que se formaron al emplear la tripsina. Por medio de estas bandas podemos distinguir las características de un cromosoma y determinar si es normal o presenta alguna anomalía estructural. Existen otras técnicas de tinción, como bandas NOR, ICH, bandas Q, bandas R, técnicas para teñir centrómero y heterocromatina. Con este tipo de técnicas se puede llegar a realizar un diagnóstico citogenético acerca de una enfermedad cromosómica.
  8. Lectura: El último paso consiste en leer por lo menos 20 metafases, es decir 20 células reventadas y formar un cariotipo o cariograma, donde se acomodan los cromosomas por grúpos según el tamaño y la localización del centrómero.

En el grupo A se tienen los cromosomas 1, 2, 3. Grandes metacéntricos, excepto el 2, el cual es un cromosoma grande submetacéntrico.

En el grupo B se tienen los cromosomas 4 y 5, que son submetacéntricos grandes.

En el grupo C se tienen los cromosomas 6,7,8,9,10,11 y 12, que son los submetacéntricos medianos.

En el grupo D se tienen a los cromosomas 13,14 y 15, que son acrocéntricos medianos y presentan satélites en sus brazos cortos.

El grupo E se encuentra constituido por los cromosomas 16, 17, 18, submetacéntricos pequeños.

En el grupo F se tienen a los cromosomas 19 y 20, metacéntricos pequeños.

El grúpo G se constituye por los cromosomas 21 y 22, acrocéntricos pequeños.

El par de gonosomas o sexocromosomas se constituyen por X (submetacéntrico mediano) e Y considerado acrocéntrico sin satélites, aunque en algunas revisiones de la literatura se le refiere como submetacéntrico.

Los cromosomas son los portadores del ADN, por lo tanto son parte integral estructural imprescindible de los seres vivos.

Algunas entidades se encuentran formadas por hebras de ADN o ARN sin formar estructruras complejas como la de los cromosomas, un ejemplo claro son los virus.

[editar] Tamaño cromosómico

Los cromosomas sufren grandes variaciones en su tamaño a lo largo del ciclo celular, pasando de estar muy poco compactados (interfase) a estar muy compactados (metafase), por tal motivo, los estudios sobre el tamaño suelen realizarse en metafase mitótica. Además, es necesario tener en cuenta que los tratamientos para teñir los cromosomas y para obtener las metafase mitóticas influyen de manera muy importante en el tamaño de los cromosomas. En cualquier caso, en general es posible decir que hay especies eucarióticas con cromosomas grandes y especies con cromosomas pequeños. Las monocotiledóneas (vegetales) y los anfibios y ortópteros (animales) poseen cromosomas muy largos (de 10 a 20 micras). Las dicotiledóneas, las algas, los hongos y la mayoría de las especies animales poseen cromosomas pequeños (longitud inferior a 5 micras). Naturalmente, existen algunas excepciones en los ejemplos citados. El cromosoma 1 humano tiene 0,235 pg de ADN, que equivalen a una longitud total de ADN doble hélice de 7,3 cm y en metafase mitótica presenta una longitud aproximada de 0,001 cm.

[editar] Cromosomas humanos

CromosomaGenesBasesBases determinadas †
1 2968 245.203.898 218,712,898
2 2288 243,315,028 237,043,673
3 2032 199,411,731 193,607,218
4 1297 191,610,523 186,580,523
5 1643 180,967,295 177,524,972
6 1963 170,740,541 166,880,540
7 1443 158,431,299 154,546,299
8 1127 145,908,738 141,694,337
9 1299 134,505,819 115,187,714
10 1440 135,480,874 130,710,865
11 2093 134,978,784 130,709,420
12 1652 133,464,434 129,328,332
13 748 114,151,656 95,511,656
14 1050 105,311,216 87,410,661
15 1122 100,114,055 81,117,055
16 1098 89,995,999 79,890,791
17 1576 81,691,216 77,480,855
18 766 77,753,510 74,534,531
19 1454 63,790,860 55,780,860
20 927 63,644,868 59,424,990
21 303 46,976,537 33,924,742
22 288 49,476,972 34,352,051
Cromosoma X 1184 152,634,166 147,686,664
Cromosoma Y 231 50,961,097 22,761,097
unplaced various  ? 25,263,157 25,062,835

[editar] Tipos especiales de cromosomas

[editar] Cromosomas politénicos

Cromosoma politénico.
Imagen:Axkaryotype.jpg
Cromosoma politénico de larvas de Axarus.

[editar] Cromosomas en escobilla

Cromosoma en escobilla.

[editar] Cromosomas B

[editar] Isocromosomas

[editar] El cromosoma en organismos procariotas

Los procariotas, bacteria y archaea, presentan típicamente un solo cromosoma circular, si bien existen algunas variantes a esta regla.[10] El cromosoma bacteriano puede tener un tamaño desde 160.000 pares de bases (como en el endosimbionte Carsonella ruddii,[11] a 12.200.000 pares de bases en la bacteria del suelo Sorangium cellulosum.[12]

Las bacterias usualmente tienen un solo punto en su cromosoma desde el cual se inicia la duplicación, mientras que algunas archeas presentan mñultiples sitios de incio de la duplicación.[13] Por otro lado, los genes de los procariotas están organizados en operones y no contienen intrones.

Los procariotas no poseen un núcleo verdadero, en cambio su ADN está organizado en una estructura denominada nucleoide.[14] El nucleoide es una estrutura distintiva y ocupa una región definida en la célula bacteriana. Esta estructura es muy dinámica y se halla mantenida y remodelada a través de la acción de proteínas similares a histonas, las cuales se asocian al cromosoma bactaetiano.[15] En archaea, el ADN en el cromosoma se halla todavía más organizado, con el ADN empacado dentro de estructuras similares a los nucleosomas eucarióticos.[16] [17]

[editar] Véase también

 

[editar] Referencias

  1. Nägeli, Carl, "Memoir on the nuclei, formation, and growth of vegetable cells (A. Henfrey, trans.), in C. and J. Adlard, eds, Reports and Papers on Botany. London: The Ray Society, 1846.
  2. Daintith, John, et al., (eds), Biographical Encyclopedia of Scientists, second edition. Bristol, UK: Institute of Physics Publishing, 1994.
  3. Flemming, W. 1882. Zell-substanz, Kern und Zelltheilung ("Citoplasma, núcelo y división celular").
  4. Morgan, Thomas Hunt, "Chromosomes and Heredity," The American Naturalist, 44(524):449-496, 1910.
  5. Gonzalo Claros, M. Historia de la Biologìa (V): La naturaleza química del DNA (hasta el primer tercio del siglo XX). Edición para Internet de la revista Encuentros en la Biología, editada en la Facultad de Ciencias de la Universidad de Málaga. ISSN 1134-8496
  6. a b Klug A, Rhodes D, Smith J, Finch JT, Thomas JO. A low resolution structure for the histone core of the nucleosome. Nature. 1980 Oct 9;287(5782):509–516.
  7. a b Klug, A. & L C Lutter.1981. The helical periodicity of DNA on the nucleosome. Nucleic Acids Res. September 11; 9(17): 4267–4283.
  8. a b Paulson J.R., Laemmli U.K. 1977. The structure of histone depleted metaphase chromosomes. Cell, 12 (3), pp. 817-828.
  9. Arnold J. Bendich, Karl Drlica. 2000. Prokaryotic and eukaryotic chromosomes: what's the difference?. BioEssays 22: 481-486.
  10. Thanbichler M, Shapiro L (2006). "Chromosome organization and segregation in bacteria". J. Struct. Biol. 156 (2): 292–303. DOI:10.1016/j.jsb.2006.05.007.
  11. Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar H, Moran N, Hattori M (2006). "The 160-kilobase genome of the bacterial endosymbiont Carsonella". Science 314 (5797): 267. DOI:10.1126/science.1134196.
  12. Pradella S, Hans A, Spröer C, Reichenbach H, Gerth K, Beyer S (2002). "Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56". Arch Microbiol 178 (6): 484–92. DOI:10.1007/s00203-002-0479-2.
  13. Kelman LM, Kelman Z (2004). "Multiple origins of replication in archaea". Trends Microbiol. 12 (9): 399–401. DOI:10.1016/j.tim.2004.07.001.
  14. Thanbichler M, Wang SC, Shapiro L (2005). "The bacterial nucleoid: a highly organized and dynamic structure". J. Cell. Biochem. 96 (3): 506–21. DOI:10.1002/jcb.20519.
  15. Sandman K, Pereira SL, Reeve JN (1998). "Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome". Cell. Mol. Life Sci. 54 (12): 1350–64. DOI:10.1007/s000180050259.
  16. Sandman K, Reeve JN (2000). "Structure and functional relationships of archaeal and eukaryal histones and nucleosomes". Arch. Microbiol. 173 (3): 165–9. DOI:10.1007/s002039900122.
  17. Pereira SL, Grayling RA, Lurz R, Reeve JN (1997). "Archaeal nucleosomes". Proc. Natl. Acad. Sci. U.S.A. 94 (23): 12633–7. DOI:10.1073/pnas.94.23.12633.

 

[editar] Bibliografía

  • Adolph, K. (ed.) 1988. Chromosomes and chromatin, Vols. 1-3, Boca RAton, FL; CRC Press.
  • Hsu, T.C. 1979. Human and mammalian cytogenetics: an historical perspective. New York, Springer Verlag.
  • Stewart, A. 1990. The functional organization of chromosomes and the nucleus, a special issue. Trends Genet. 6:377-379
  • Price, C.M. 1992. Centromeres and telomeres. Curr. Opin. Cell Biol. 4: 379-384.
  • Gall, J.G. 1981. Chromosome structure and the C-value paradox. J. Cell Biol. 91:3-14
  • Blackburn, E.H., Szostak, J.W. 1984. The molecular structure of centromeres and telomeres. Annu. Rev. Biochem. 53: 163-194.

[editar] Enlaces externos

Commons

Página anterior

Tags: cromosoma, genética, sexo, hembras, vegetales, ADN, macho

Publicado por blasapisguncuevas @ 16:33  | SEXUALIDAD
Comentarios (0)  | Enviar
Comentarios
Discurso Impecable de Fidel Castro y ¿Por qué MoReNa? @Taibo2 Paco Ignacio Taibo II

Pirámide capitalista
Pirámide capitalista. actualizada