Domingo, 19 de abril de 2009

Los anticuerpos (también conocidos como inmunoglobulinas[1] ) son glucoproteínas del tipo gamma globulina. Pueden encontrarse de forma soluble en la sangre o en otros fluidos corporales de los vertebrados, disponiendo de una forma idéntica que actúa como receptor de los linfocitos B y son empleados por el sistema inmunitario para identificar y neutralizar elementos extraños tales como bacterias, virus o parásitos.

El anticuerpo típico esta constituido por unidades estructurales básicas, cada una de ellas con dos grandes cadenas pesadas y dos cadenas ligeras de menor tamaño, que forman, por ejemplo, monómeros con una unidad, dímeros con dos unidades o pentámeros con cinco unidades. Los anticuerpos son sintetizados por un tipo de leucocito denominado linfocito B. Existen distintas modalidades de anticuerpo, isotipos, basadas en la forma de cadena pesada que posean. Se conocen cinco clases diferentes de isotipos en mamíferos que desempeñan funciones diferentes, contribuyendo a dirigir la respuesta inmune adecuada para cada distinto tipo de cuerpo extraño que encuentran.[2]

Aunque la estructura general de todos los anticuerpos es muy semejante, una pequeña región del ápice de la proteína es extremadamente variable, lo cual permite la existencia de millones de anticuerpos, cada uno con un extremo ligeramente distinto. A esta parte de la proteína se la conoce como región hipervariable. Cada una de estas variantes se puede unir a una "diana" distinta, que es lo que se conoce como antígeno.[3] Esta enorme diversidad de anticuerpos permite al sistema inmune reconocer una diversidad igualmente elevada de antígenos. La única parte del antígeno reconocida por el anticuerpo se denomina epítopo. Estos epítopos se unen con su anticuerpo en una interacción altamente específica que se denomina adaptación inducida, que permite a los anticuerpos identificar y unirse solamente a su antígeno único en medio de los millones de moléculas diferentes que componen un organismo.

El reconocimiento de un antígeno por un anticuerpo lo marca para ser atacado por otras partes del sistema inmunitario. Los anticuerpos también pueden neutralizar sus objetivos directamente, mediante, por ejemplo, la unión a una porción de un patógeno necesaria para que éste provoque una infección.

La extensa población de anticuerpos y su diversidad se genera por combinaciones al azar de un juego de segmentos genéticos que codifican diferentes lugares de unión al antígeno (o paratopos), que posteriormente sufren mutaciones aleatorias en esta zona del gen del anticuerpo, lo cual origina una diversidad aún mayor.[2] [4] Los genes de los anticuerpos también se reorganizan en un proceso conocido como conmutación de clase de inmunoglobulina que cambia la base de la cadena pesada por otra, creando un isotipo de anticuerpo diferente que mantiene la región variable específica para el antígeno diana. Esto posibilita que un solo anticuerpo pueda ser usado por las diferentes partes del sistema inmune. La producción de anticuerpos es la función principal del sistema inmunitario humoral.[5]

Wikipedia:Artículos buenos
Molécula de inmunoglobulina con su típica forma de Y. En azul se observan las cadenas pesadas con sus cuatro dominios Ig, mientras que en verde se muestran las cadenas ligeras. Entre el tallo (Fracción constante, Fc) y las ramas (Fab) existe una parte más delgada conocida como "región bisagra" (hinge).

 

Contenido

[editar] Anticuerpos, inmunoglobulinas y gammaglobulinas

Representación de una electroforesis de las proteínas del suero sanguíneo

En general, como ya se dijo en la introducción, se considera que anticuerpo e inmunoglobulina son sinónimos, haciendo referencia el primer término a la función, mientras que el segundo alude a la estructura. El término gammaglobulina se debe a las propiedades electroforéticas de las inmunoglobulinas solubles en suero, si bien algunas inmunoglobulinas migran con las fracciones alfa, beta e incluso con la albúmina (Peña, 1998).

[editar] Historia

En 1890 comenzó el estudio de los anticuerpos cuando Emil Adolf von Behring y Shibasaburo Kitasato describieron la actividad de los anticuerpos contra la difteria y la toxina tetánica. Behring y Kitasato propusieron la teoría de la inmunidad humoral, que establecía la existencia de un mediador en el suero sanguíneo que podría reaccionar con un antígeno extraño, dándole el nombre de anticuerpo.[6] [7] Su idea llevó en 1897 a Paul Ehrlich a proponer la teoría de la cadena lateral de la interacción entre antígeno y anticuerpo y a lanzar la hipótesis de que existían receptores (descritos como "cadenas laterales") en la superficie de las células que se podrían unir específicamente a toxinas—en una interacción de tipo llave-cerradura—y que esta reacción de acoplamiento era el desencadenante de la producción de anticuerpos.[8]

En 1904, siguiendo la idea de otros investigadores de que los anticuerpos se daban libres en la sangre, Almroth Wright sugirió que los anticuerpos solubles revestían las bacterias para señalarlas para su fagocitosis y destrucción en un proceso denominado opsonización.[9]

En los años 1920, Michael Heidelberger y Oswald Avery descubrieron la naturaleza de los postulados anticuerpos al observar que los antígenos podían ser precipitados por ellos y demostrando que éstos eran un tipo de proteínas.[10]

Actual Universidad Rockefeller (antiguo Instituto), donde se desarrollaron buena parte de los avances en el estudio de los anticuerpos

A finales de los años 1930 John Marrack examinó las propiedades bioquímicas de las uniones antígeno-anticuerpo.[11] Luego, en los años 1940 tiene lugar el siguiente avance de importancia, cuando Linus Pauling confirmó la teoría de la llave y la cerradura propuesta por Ehrlich mostrando que las interacciones entre anticuerpos y antígenos dependían más de su forma que de su composición química.[12] En 1948, Astrid Fagreaus descubrió que los linfocitos B en su forma de célula plasmática eran responsables de la producción de anticuerpos.[13]

Los siguientes trabajos de investigación se concentraron en la caracterización de la estructura molecular de los anticuerpos:

[editar] Formas de anticuerpos

Diagrama de cintas de la estructura molecular de una Inmunoglobulina A, un tipo de Ig secretable.

Los Linfocitos B activados se diferencian en células plasmáticas, cuyo papel es la producción de anticuerpos solubles o bien en linfocitos B de memoria, que sobreviven en el organismo durante los años siguientes para posibilitar que el sistema inmune recuerde el antígeno y responda más rápido a futuras exposiciones al agente inmunógeno.[22] Los anticuerpos son, por tanto, un producto esencial del sistema inmunitario adaptativo que aprenden y recuerdan las respuestas a patógenos invasores. Los anticuerpos se encuentran en dos formas: en forma soluble secretada en la sangre y otros fluidos del cuerpo y en forma unida a la membrana celular que esta anclada a la superficie de un linfocito B.

[editar] Forma soluble

Los anticuerpos solubles son secretados por un linfocito B activado (en su forma de célula plasmática) para unirse a substancias extrañas y señalizarlas para su destrucción por el resto del sistema inmune. También se les podría llamar anticuerpos libres (hasta que se unen a un antígeno y acaban como parte de un complejo antígeno-anticuerpo o como anticuerpos secretados. En estas formas solubles se unen a las inmunoglobulinas moléculas adicionales. En la IgM, por ejemplo, encontramos una glucoproteína unida a la Fracción constante mediante puentes disulfuro de unos 15 KD llamada cadena J. Al isotipo IgA, además, se le une la llamada "pieza de secreción". Se trata de una glucoproteína que se forma en las células epiteliales y glándulas exocrinas, y que posteriormente se une a la inmunoglobulina para facilitar su secreción. (Peña, 1998)

[editar] Forma anclada a membrana

La forma anclada a membrana de un anticuerpo se podría llamar inmunoglobulina de superficie (sIg) o inmunoglobulina de membrana (mIg), que no es secretado: siempre está asociado a la membrana celular. Forma parte del receptor del linfocito B (BCR), que permite a éste detectar cuando un antígeno específico está presente en el organismo, desencadenando la activación del linfocito B.[23] El BCR se compone de anticuerpos IgD o IgM unidos a la superficie de membrana y sus heterodímeros asociados Ig-α e Ig-β que tienen capaz de producir la transducción de señal del reconocimiento del anticuerpo a la célula.[24] Un linfocito B humano típico tiene entre 50,000 y 100,000 anticuerpos unidos a su superficie.[24] Tras el acoplamiento del antígeno, éstos se agrupan en grandes parches cuyo diámetro puede exceder de 1μm en balsas lipídicas que aislan los BCRs (receptores de la célula B) de la mayor parte de los restantes receptores de señalización celular.[24] Estos parches podrían mejorar la eficiencia de la respuesta inmune celular.[25] En los seres humanos, la superficie celular está libre de otras proteínas alrededor de los receptores de los linfocitos B en distancias de algunos miles de ångströms,[24] lo cual reduce de tal manera las influencias que compiten con su función, que incluso aísla a los BCRs.

Véase también: Receptor de linfocitos T

[editar] Isotipos, alotipos e idiotipos

Tipos de anticuerpos en mamíferos Nombre Tipos Descripción Complejos de anticuerpos IgA 2 Se encuentra en las mucosas, como el tubo digestivo, el tracto respiratorio y el tracto urogenital. Impide su colonización por patógenos.[26] También se encuentran en la saliva, las lágrimas y la leche. IgD 1 Su función consiste principalmente en servir de receptor de antígenos en los linfocitos B que no han sido expuestos a los antígenos.[27] Su función está menos definida que en otros isotipos. IgE 1 Se une a alérgeno y desencadena la liberación de histamina de las células cebadas y basófilos y está implicada en la alergia. También protegen contra gusanos parásitos.[5] IgG 4 Proporcionan, en sus cuatro formas, la mayor parte de la protección inmunitaria basada en anticuerpos contra los patógenos invasores.[5] Es el único anticuerpo capaz de cruzar la placenta para proporcionar al feto inmunidad pasiva. IgM 1 Se expresa en la superficie de los linfocitos B y en forma de secreción con gran avidez por su diana. Elimina los patógenos en los estadíos tempranos de la respuesta inmune mediada por linfocitos B (humoral) hasta que existen suficientes IgGs.[5] [27]

Los anticuerpos pueden presentarse en distintas variedades conocidas como isotipos o clases. en mamíferos placentados existen cinco isotipos de anticuerpos conocidos como IgA, IgD, IgE,IgG e IgM. Se nombran mediante el prefijo "Ig" que significa inmunoglobulina y difieren en sus propiedades biológicas, localizaciones funcionales y capacidad para reconocer diferentes tipos de antígenos como se muestra en la tabla.[28]

El isotipo cambia durante el desarrollo y la activación de los linfocitos B. Antes de la maduración de estos últimos, cuando aún no se han expuesto a su antígeno, se conocen como linfocitos B vígenes y sólo expresan el isotipo IgM en su forma anclada a la superficie celular. Los linfocitos comienzan a expresar tanto IgM como IgD cuando alcanzan la madurez y en ese momento están listos para responder a su antígeno.[29] La activación de los linfocitos B sigue al encuentro y unión de éste con su antígeno, lo que estimula a la célula para que se divide y se diferencie en una célula productora de anticuerpos denominada plasmática. En esta forma activada, los linfocitos B comienzan a secretar anticuerpos en lugar de anclarlos a la membrana. Algunas células hijas de los linfocitos B activados sufren un cambio isotípico, un mecanismo que provoca que la producción de anticuerpos en las formas IgM o IgD se trasmute a los otros tipos, IgE, IgA o IgG, que desempeñan distintos papeles en el sistema inmunitario.

[editar] Alotipos

Se entiende por alotipo las pequeñas diferencias en la secuencia de aminoácidos en la región constante de las cadenas ligeras y pesadas de los anticuerpos producidos por los distintos individuos de una especie, que se heredan de forma mendeliana (Peña, 1998). En humanos se han descrito 3 tipos de determinantes alotípicos:

  • En 1956 Grubb y Laurell descubren el sistema Gm en la clase de inmunoglobulinas IgG. Este sistema puso de manifiesto los diversos alotipos de las cadenas pesadas. También permite diferenciar cuatro subclases en estas moléculas: IgG1, IgG2, IgG3 e IgG4 y son determinados genéticamente.[30]
  • C. Ropartz y colaboradores descubrieron en 1961 el sistema Km (llamado Inv al principio), localizado en la cadena ligera Kappa. Este alotipo está presente en todas las clases de inmunoglobulina.
  • También existe el sistema ISf, situado en la cadena pesada γ1 de la IgG1. La expresión de esta especificidad aumenta con la edad, siendo de un 25% de los sujetos antes de los 20 años hasta un 60% después de los 70 años en los caucasoides.
  • Los alotipos definidos por el sistema Am se sitúan en las IgA, y más precisamente en las cadenas α2. Existen dos isotipos, α1 y α2, que caracterizan las subclases Am1 y Am2 de las IgA. (Staff, 2003)

[editar] Idiotipo

El idiotipo es el epítopo propio de una molécula perteneciente a un clon en particular. Este elemento forma parte o está muy próximo al lugar de reconocimiento del antígeno, y está situado en la porción variable Fab. En otras palabras, es el paratopo, o la región cercana de una inmunoglobulina puede ser reconocido como un epitopo por ciertos linfocitos (Staff, 2003). Según la Teoría de Jerne, La formación de anticuerpos antiidiotipo formaría una red (red de Jerne) cuya función sería la regulación de la síntesis de nuevas inmunoglobulinas. (Peña, 1998).

[editar] Estructura

Los anticuerpos son proteínas plasmáticas globulares pesadas (~150kDa), también conocidas como inmunoglobulinas. Tienen cadenas de azúcares unidas a alguno de sus residuos aminoácido.[31] En otras palabras, los anticuerpos son glucoproteínas. La unidad básica funcional de cada anticuerpo es el monómero de inmunoglobulina, que contiene una sola unidad de Ig. Los anticuerpos secretados también pueden ser diméricos con dos unidades Ig, como en el caso de las IgA, tetraméricos con cuatro unidades Ig como en el caso de las IgM de teleósteo, o pentaméricos con cinco unidades de IgM, como en el caso de las IgM de mamíferos.[32]

Las inmunoglobulinas constan de distintos dominios, que a su vez se agrupan en las dos cadenas pesadas (rojo y azul) y las dos cadenas ligeras (verde y amarillo) del anticuerpo. Los dominios de la inmunoglobulina están compuestos de entre 7 (en el caso de la IgC) y 9 (IgV) plegamientos β.[33]

[editar] Primeros trabajos

Las primeras investigaciones sobre la estructura de los anticuerpos fueron realizados mediante sencillas digestiones con pepsina y papaína por Rodney Robert Porter y Gerald M. Edelman, seguidas de electroforesis. Ambos recibieron por ello el Premio Nobel de medicina en 1972. También fue importante la figura de Alfred Nisonoff:

  • En los años 1950, Porter procede a hacer una digestión suave con papaína, obteniendo tres fragmentos, dos de los cuales retenían la especificidad de antígeno (Fab), mientras que el tercero no mostraba actividad de unión, mientras que se podía cristalizar (Fc).
  • En 1959, Edelman, utilizando 2-Mercaptoetanol y urea, seguido de electroforesis, consigue aislar las cadenas ligeras y pesadas, al disociar sus enlaces disulfuro y no covalentes.
  • Ese mismo año, Porter identifica los componentes de las cadenas ligeras y pesadas que se encontraban en sus fragmentos de papaína y pepsina, y consigue sus pesos moleculares.
  • En 1960, Nisonoff demostró que la digestión con pepsina de IgG's producía un fragmento bivalente, que en realidad está formado por otros dos, que el denominó F (ab')2 .[34]

[editar] Dominios de inmunoglobulina

El monómero de Ig es una moléucula en forma de "Y" que consta de dos cadenas de polipéptido; dos cadenas pesadas idénticas y dos cadenas ligeras idénticas conectadas por enlaces disulfuro.[28] Cada cadena se compone de dominios estructurales llamados dominios Ig. Estos dominios contienen entre 70 y 110 aminoácidos y se clasifican en diferentes categorías, por ejemplo en variables (IgV) y constantes (IgC) de acuerdo con su tamaño y función.[35] Tienen un "pliegue inmunoglobulina" caracterísico en el cual dos láminas beta generan una forma de "sandwich", permaneciendo juntas por interacciones entre cisteínas bien conservadas a lo largo de la evolución, así como otros aminoácidos cargados.

[editar] Cadena pesada

Hay cinco tipos de Ig en mamíferos que se nombran por letras griegas: α, δ, ε, γ y μ.[3] El tipo de cadena pesada presente define la clase del anticuerpo.Estas cadenas se encuentran en los anticuerpos IgA, IgD, IgE, IgG, e IgM respectivamente. Las distintas cadenas pesadas difieren en tamaño y composción: α y γ contienen aproximadamente 450 aminoácidos, mientras que μ y ε poseen aproximadamente 550 aminoácidos.[3]

1. Región Fab
2. Región Fc
3. Cadena pesada con un dominio variable (VH) seguido por un dominio constante (CH1), una región bisagra, y dos más constantes, los dominios (CH2 y CH3).
4. Cadena ligera con un dominio variable (VL) y uno constante (CL)
5. Lugar de unión al antígeno (paratopo)
6. Regiones bisagra.

diferentes isotipos. Las cadenas pesadas γ, α y δ tienen una región constrante compuesta de tres dominios estructurales Ig en tándem y una región bisagra para proporcionarle flexibilidad.[28] Las cadenas pesadas μ y ε tienen una región constante compuesta por cuatro dominios inmunoglobulina.[3] La región variable de la cadena pesada difiere en los anticuerpos producidos en los diferentes linfocitos B, pero es lo mismo para todos los anticuerpos producidos por el mismo linfocito B o por su linea clonal. La región variable de cada cadena pesada es de aproximadamente 110 aminoácidos y está compuesto por un únio dominio Ig.

Continúa en anticuerpo, wikipedia


Tags: anticuerpos, virus, leucocito, bacterias, organismo

Publicado por blasapisguncuevas @ 4:50  | Salud y ciencia
Comentarios (0)  | Enviar
Comentarios
Discurso Impecable de Fidel Castro y ¿Por qué MoReNa? @Taibo2 Paco Ignacio Taibo II

Pirámide capitalista
Pirámide capitalista. actualizada